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Abstract 

  This study explores the use of energy sentiment as a predictive tool for forecasting oil price 
shocks by developing a Twitter-based energy sentiment index derived from 1,911,631 tweets. The 
sentiment index is utilized to predict three types of oil price shocks: demand, supply, and risk 
shocks, through various machine learning algorithms. Among these, the XGBoost model is found 
to outperform other models, achieving prediction accuracies of 60.20%, 62.00%, and 92.60% for 
demand shock, supply shock, and risk shock, respectively. Further model interpretation using 
Explainable AI reveals that the developed energy sentiment indicators contribute 29.33% to the 
oil price shock prediction, demonstrating the significant role of sentiment data in forecasting oil 
price fluctuations. These findings highlight the potential of leveraging real-time social media 
sentiment for improving oil price prediction models. 
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1. Introduction 
  The dynamics of oil markets play a pivotal role in shaping global economic landscapes, influencing 
inflation rates, stock market performance, and overall macroeconomic stability. Oil price shocks, in 
particular, featured by abrupt and significant fluctuations in oil prices can trigger cascading effects 
throughout the global economy. For instance, the ongoing conflict between Russia and Ukraine has 
had profound influences on global energy markets, contributing to heightened volatility and 
uncertainty in oil prices, results in the rise of production cost, leading to further inflationary 
pressures, and affect consumer confidence, and investment strategies. Understanding and predicting 
oil price shocks—especially during periods of market volatility—are therefore of paramount 
importance for policymakers, investors, and industry stakeholders alike. Traditional econometric 
models and time-series analyses have been employed to forecast oil prices and oil price shocks, with 
mixed success. While models based on macroeconomic fundamentals or supply-demand balances 
provide useful insights into long-term price trends, they often struggle to account for the high degree 
of volatility and sudden, unpredictable shifts that characterize oil markets. Moreover, these models 
are limited in their ability to process large volumes of unstructured data, such as social media posts, 
which can reflect real-time shifts in market sentiment and expectations. In recent years, there has 
been a growing interest in leveraging alternative data sources and using sophisticated computational 
methods to enhance the accuracy and timeliness of oil price forecasts. 

  One such emerging approach is the utilization of sentiment analysis, particularly sentiment derived 
from news articles, social media discussions and financial reports, to predict oil price shocks. The 
rationale behind employing sentiment analysis for oil price prediction lies in the recognition that 
market sentiments and investor psychology play a crucial role in driving short-term price 
fluctuations, especially in volatile commodity markets. Energy sentiment, in particular, 
encapsulating the collective perceptions, beliefs, and attitudes towards the energy sector, serves as 
a powerful barometer of market sentiment, reflecting the prevailing sentiment among investors and 
analysts, and ultimately, the trajectory of oil prices. By harnessing the predictive power of energy 
sentiment, stakeholders can gain valuable insights into the factors driving oil price movements and 
anticipate impending shocks before they materialize. 

  Previous studies have demonstrated the relevance of online-based text in predicting oil price 
shocks. For instance, by adopting the structural vector autoregression (SVAR) model, and the 
principle component analysis (PCA) method to combine the google search index, Yao, Zhang and 
Ma (2017) analysis the impact of investor attention on international crude oil prices. Their research 
highlight a significance negative influence of investor attention on crude oil prices. Using news on 
the oil market, Li et al. (2021) document that shocks in news sentiment can lead to volatility across 
the future prices of oil. Zhe et al. (2022) use the comments on an online financial forum (i.e., 
Eastmoney forum), and show the predictive power of sentiment for China’s crude oil price. A notable 
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fact, however, is that these studies rely solely on counting words for textual analysis and simple 
extraction of quantity in news which fail to provide a sentiment analysis based on the meaning of 
text. Hence, considering the emotional tendency of web texts often cause fluctuations of investor 
sentiment, which further lead to energy price movements, and also recommended by Shiller (2017) 
that semantic sentiment shall be used for examining narratives across financial markets since it can 
highlight the psychological significance of sentiment. There is a stream of literature focuses on using 
emotion analysis from texts and mining deeper information to aid prediction. For instance, Tetlock 
(2007) investigates the predictive power of daily content from Wall Street Journal column for stock 
market prices using vector autoregressive (VAR) framework. Although the study primarily focuses 
on stock market prices, it indirectly underscores the interconnectedness between emotional 
sentiment analysis and broader financial markets. The research reveals that media pessimism could 
potentially predict stock market prices. Li et al. (2022) conducts a comprehensive review of the 
literature on the relationship between oil price and investor sentiment. Their review provides 
valuable insights into various methodologies used in investigating the connection between oil price 
and sentiment analysis. The authors discuss the challenges and limitations associated with different 
approaches and highlight the potential of sentiment analysis as a tool in predicting oil price shocks. 

  Although existing studies have shown promising results in using sentiment analysis to forecast oil 
price shocks, there are lack of studies using sentiment data from other sources, such as energy sector, 
to enhance the accuracy and robustness of predictive models. We, in this paper, aim to fill this gap 
in the literature. Our study strives to answer several key questions aimed at exploring the potential 
of energy sentiment as a predictor of oil price shocks. First, we investigate whether energy sentiment 
can reliably forecast oil price shocks, hypothesizing that shifts in public and market sentiment, 
driven by news and geopolitical events, can serve as leading indicators of such shocks. Second, we 
aim to determine whether energy sentiment can distinguish between different types of oil price 
shocks—specifically demand, supply, and risk shocks—each of which has distinct drivers and 
implications for the oil market. Understanding the unique sentiment patterns associated with these 
shock types is crucial for enhancing the precision of oil price forecasts. Finally, we assess which 
machine learning techniques are most effective in utilizing sentiment data to predict oil price shocks. 
By applying these algorithms to the constructed energy sentiment index, we seek to identify the 
most accurate and robust predictive models, thus advancing the integration of sentiment analysis 
into oil price forecasting methodologies. 

  This paper makes three makes three important contributions to the literature on oil price 
forecasting and sentiment analysis: First, to the best of our knowledge, our paper is the first to 
explore the potential feasibility and effectiveness of using energy sentiment as a predictive tool for 
anticipating oil price shocks. We adopt various machine learning algorithms such as XGBoost, 
Random Forest, and SVM to evaluate the effectiveness of sentiment-based predictions. These 
methods are more flexible and accurate than traditional methods like linear regression or ARIMA. 
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Furthermore, they are better equipped to handle complex, non-linear relationships and high-
dimensional data, making them particularly suitable for capturing the intricacies of sentiment-driven 
oil price shocks. By comparing the performance of these algorithms, we aim to determine which 
approaches are most suitable for forecasting oil price shocks. Moreover, by using machine learning 
algorithms, we provide a more comprehensive and predictive framework that improves upon 
traditional econometric models and offers a more nuanced understanding of the factors driving oil 
price fluctuations. This methodological innovation helps bridge the gap between traditional 
economic theories and modern data-driven forecasting approaches. Second, we develop a unique 
energy sentiment index by specifically selecting Twitter feeds related to energy markets, a 
methodological approach that distinguishes our study from existing literature. This approach adds 
value to prior work, as argued by Abdollahi (2023), who emphasizes the importance of incorporating 
real-time social media data in understanding market sentiment. By aggregating Twitter sentiment 
data, we capture public opinion and emotional responses in a timely manner, offering a fresh 
perspective on factors influencing oil price movements. Our third contribution is that while previous 
research has focused on general oil price forecasting, this study aims to distinguish between different 
types of oil price shocks (demand, supply, and risk). By identifying the specific drivers of each shock, 
we can develop more precise and actionable predictions. 

  Foreshadowing the main results, we find that ensemble models, particularly XGBoost, outperform 
traditional methods such as Logistic Regression (LR), Support Vector Machines (SVM), and K-
Nearest Neighbors (KNN). XGBoost consistently delivered the highest accuracy, precision, recall, 
F1-score, and ROC_AUC across multiple evaluation metrics, highlighting its ability to capture 
complex non-linear relationships and interactions within the data. Additionally, Random Forest 
(RF) and LightGBM (LGBM) showed competitive performance, reinforcing the strength of tree-
based models in oil price forecasting. Through robustness tests with varying train-test splits, we 
confirmed the stability and reliability of the XGBoost model, which maintained its superior 
performance across different training data sizes. Furthermore, the Explainable AI analysis using 
SHAP values provided valuable insights into the factors driving oil price predictions. Sentiment 
indicators, particularly negative and positive sentiment, emerged as the most influential features, 
followed by global risk aversion (RAI) and oil-specific volatility (OVX). These findings emphasize 
the importance of market sentiment, risk perceptions, and volatility in predicting oil price shocks, 
alongside traditional supply and demand factors. Our paper has important policy implications for 
incorporating sentiment analysis into risk management strategies and investment decision-making 
processes within the energy sector. By harnessing the insights derived from energy sentiment data, 
stakeholders can better navigate the complexities of the oil market and proactively respond to 
emerging trends and sentiment shifts. 

  The remainder of this paper is organized as follows: Section 2 reviews relevant literature. Section 
3 explains the data, section 4 outlines the empirical strategies adopted in this study. Section 5 
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reports and discusses the empirical findings and section 6 concludes with policy recommendations 
provided.   

 

2. Review of Related Literature 
  Due to the pivotal role of crude oil plays in the global economy, accurately forecasting crude oil 
prices has attracted significant attentions among researchers, leading to the implementation of 
various models. Early research rely on theory-based models for establishing linkages between oil 
price and other variables to predict prices. Three basic methods are used for the theory-based 
models: i) models employ futures, ii) models employ spot prices, and iii) models employ economic 
indicators. The seminal study of Verleger (1982) develops a theory-driven model by utilizing a barrel 
of oil price can be predicted by the weighted sum of the prices of the products made out of oil. 
Although the model has its merits such as simplicity, Knetsch (2007) argues that oil futures are not 
a good predictor for oil prices. Hence, a number of models have been established to predict energy 
futures price instead of directly forecasting oil price (e.g., Date et al., 2013; Lautier and Galli, 2004). 
However, since our focus is the crude oil price, we do not consider these futures-based models in our 
analysis. Baumeister et al. (2018) argues that the futures-focused models can be improved by using 
spot prices instead of future prices. Alquist et al. (2013) propose that some economic indicators can 
be used for oil price forecasting. They therefore develop an economic indicators based model which 
assumes that oil price changes simultaneously with some economic indicators such as industrial raw 
materials. 

  Early empirical studies tend to employ traditional time series techniques such as autoregressive 
(AR), autoregressive moving average (ARMA), and vector autoregression (VAR) models for 
predicting oil prices (see e.g., Baumeister and Kilian, 2012; Park and Ratti, 2008). The AR and 
ARMA models are shown to be performed well for oil price forecasting. Their weakness however is 
that they only consider one-variable (the previous values of oil price) prediction scenarios. VAR 
models are regarded as more successful approaches for oil price prediction because they allow 
multiple variables and model the interlinkages between the variables. Using oil future spreads, 
Alquist and Kilian (2010) further demonstrate the reliability of VAR models for forecasting oil 
prices. Although VAR models improve forecast accuracy, they are not able to explain why prices 
change.   

  Due to the limitations of theory-based models and classical time series techniques, machine learning 
(ML) is considered as alternative approaches. Many studies have applied ML techniques in the field 
of energy economics (see e.g., Ghoddusi et al., 2019; Lin et al., 2020; Luo et al., 2018). There are 
two advantages of ML models: i) they include information that are likely to be related to oil prices, 
even if such relationship is difficult to quantify through theoretical or regression equations; ii) they 
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can investigate complex and highly nonlinear equations, hence improve predictions. A number of 
studies have adopted simple ML models for oil price forecasting (Ramyar and Kianfar, 2019; Zhao 
et al., 2017). Other studies adopt more complex ML models to provide more complicated features 
that are useful for predicting oil prices (Hu et al., 2012; Xu and Niu, 2022). The advantage of simple 
ML models is that they are easier to be trained and configured. In contrast, if the ML models are 
more complex, then more difficult to have a good estimation for all model parameters and to avoid 
the issue of overfitting. Hence, in this paper, we adopt ML models for oil price shock prediction. 

  A stream of literature on oil price prediction employs wavelet analysis (Jammazi and Aloui, 2012; 
Lin et al., 2020). This method is appealing for dividing the information in price series into smaller 
pieces that makes it easier to sort out linkages within the data. The pitfall of wavelet analysis is 
that the future trends of oil price are deducted based on historical data. To deal with this issue, 
researchers realize that big data such as textual data can be a novel data source for predicting oil 
prices. Therefore, a growing body of literature have explored online text mining for market 
predictions (Gong et al., 2022; Pagolu et al., 2016). Among them, the widely accepted approach for 
processing textual data is sentiment analysis. 

  Sentiment analysis can be broadly divided into two types: i) dictionary-based approach, and ii) 
ML-based approach. Dictionary-based approach usually counts the number of positive and negative 
words in the textual data and then utilize these counts for computing a sentiment score (Medhat et 
al., 2014). For instance, Das and Chen (2007) propose a method for extracting small investor 
sentiment from a stock message board. Nandwani and Verma (2021) document that dictionary-
based approach performs well in sentiment analysis. The weakness of dictionary-based approach 
however is that words are only counted as fully positive or negative, while in reality some words are 
stronger sentiment than others. Moreover, further challenge is that one word may have different 
meanings in different scenarios. Such challenge, according to Liu (2012), is difficult to overcome 
with just using dictionary-based approach. Therefore, a body of literature adopts ML-based 
approach (see e.g., Lakatos et al., 2022; Zhao et al., 2017) as an alternative to dictionary-based 
analysis have emerged to overcome some of their issues. Sudhir and Suresh (2021) show that ML-
based approaches are often superior because their outstanding accuracy and exceptional results. 
Furthermore, ML-based approach can recognize more intricate textual patterns and excel when 
applied to big datasets. Hence, in this paper, we use machine learning techniques as our main 
empirical strategies. 

  Overall, so far there are no studies have considered using energy sentiment for crude oil forecasting. 
This study aims to fill this void. Among the most promising new data sources are social media 
platforms, particularly Twitter, where real-time discussions surrounding energy markets offer rich, 
untapped insights into market sentiment. Twitter allows users to disseminate and access information 
in real time, making it an ideal platform for monitoring market-relevant events and discussions. As 
a result, financial analysts and researchers have increasingly turned to Twitter data to extract 
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sentiment signals that can be used for forecasting asset prices, including stocks, bonds, and 
commodities. Therefore, we develop a unique energy sentiment index using Twitter feeds. By doing 
so, our index improves crude oil prediction performances significantly. 

 

3. Data and Variables 

3.1 Energy sentiment index 

  To construct the energy sentiment index, we selected energy-related keywords following studies by 
Bouteska et al. (2024), Corbett and Savarimuthu (2022), and Polyzos and Wang (2022). The chosen 
keywords included: "green energy," "renewable energy," "solar energy," "wind energy," "hydropower," 
"thermal power," "energy price," "energy policy," "energy poverty," "energy resource," "household 
energy," "industrial energy," "energy cost," "energy commodity price," "fuel cost," "oil price," "oil 
supply," "oil production," "oil demand," "fossil fuel," "gasoline," "gas," "natural gas," "electricity price," 
and "electricity cost." Using the Twitter Academic API (renamed X), we gathered 2,654,274 tweets 
containing these keywords. 

  The collected tweets were then subjected to a rigorous cleaning process using Python. This process 
involved removing emoticons, digits, retweets, white spaces, URLs, punctuation, correcting spelling 
errors, and eliminating special characters. Additionally, we used the Natural Language Toolkit 
(NLTK) module's corpus stop words (Bird et al., 2009) to remove common stop words. Tweets with 
less than three words were also deleted from the dataset due to their lack of meaningful content 
(Abdullah et al., 2024). After the data cleaning process, we were left with 1,911,631 tweets relevant 
to the energy market. Figure 1 illustrates the word cloud of the cleaned dataset, highlighting the 
prominence of terms like "gas" and "oil." 

[Insert Figure 1 Here] 

  Next, we performed sentiment analysis to measure the sentiment of each tweet. This study 
employed lexical analysis for sentiment scoring. By tokenizing each tweet, we utilized the Python 
NLTK and TextBlob libraries to evaluate sentiment based on the polarity and subjectivity of the 
tweets (Hutto and Gilbert, 2014). The polarity score, ranging from -1.0 to 1.0, indicates the 
sentiment's positivity or negativity. Subjectivity scores, ranging from 0.0 to 1.0, reflect the degree 
of objectivity, with 0.0 being extremely objective and 1.0 being highly subjective. We computed a 
compound score by summing all items in the lexicon and normalizing it between -1 and 1. Tweets 
were then categorized as Positive, Neutral, or Negative based on their compound scores: Positive 
(compound score ≥ 0.05), Neutral (-0.05 < compound score < 0.05), and Negative (compound score 
≤ -0.05) (Hutto and Gilbert, 2014). Figure 2 illustrates the sentiment distribution. 

[Insert Figure 2 Here] 
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  After classifying each tweet into Positive, Neutral, or Negative sentiment, we developed the energy 
sentiment index based on the methodology of Abdullah et al. (2024). This index was calculated 
using the following equation 

 	

𝐸𝑆𝑒𝑛𝑡&  =  
∑ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 −  ∑ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 &&

∑ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + ∑ 𝑛𝑒𝑢𝑡𝑟𝑎𝑙& + ∑ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 &&
                     (1) 

  Here, 𝐸𝑆𝑒𝑛𝑡 denotes the energy sentiment index for day 𝑡, positive, negative, and neutral denotes 
each tweet’s sentiment. 

  Figure 3 illustrates the constructed sentiment indicators, which include 𝐸𝑆𝑒𝑛𝑡, Polarity, 
Subjectivity, and Compound scores. The 𝐸𝑆𝑒𝑛𝑡 indicator captures the overall energy sentiment by 
aggregating the classified sentiments of individual tweets. The Polarity score measures the positivity 
or negativity of the sentiment on a scale from -1.0 to 1.0, while the Subjectivity score ranges from 
0.0 to 1.0, indicating the degree of objectivity versus subjectivity in the tweets. The Compound 
score is a normalized aggregate sentiment score ranging from -1 to 1, summarizing the overall 
sentiment expressed in the tweets. These sentiment indicators exhibit similar time-varying patterns, 
reflecting the dynamic nature of public opinion and its influence on the energy market. 

[Insert Figure 3 Here] 

 3.2 Measurement of oil price shock 

  To measure oil price shocks, we employ the framework proposed by Ready (2018), which identifies 
three types of structural shocks: supply shocks (Supply_Shock), demand shocks (Demand_Shock), 
and risk shocks (Risk_Shock). This methodology utilizes three critical variables: an index of oil-
producing firms, measures of oil price fluctuations, and a proxy for expected return changes. 
Specifically, the World Integrated Oil and Gas Producer Index was selected to provide a 
comprehensive representation of the oil industry. To analyze oil price changes, we used the one-
month returns on the second nearest maturity of the NYMEX Crude-Light Sweet Oil contract, as 
these short-term futures contracts effectively reflect oil price movements. Additionally, the volatility 
index (VIX) from the Chicago Board Options Exchange (CBOE) was used as a proxy for investor 
risk attitudes, with daily VIX data modeling unexpected volatility through an ARMA(1,1) 
framework. In this study, oil demand shocks (Demand_Shock) reflect the influence of changes in 
global real economic activity on oil prices. Oil risk shocks (Risk_Shock) capture the impact of 
changes in stock market volatility and market expectations. Oil supply shocks (Supply_Shock) 
account for production-related disturbances in the crude oil market, measuring factors beyond 
Demand_Shock and Risk_Shock that influence oil prices. Figure 4 illustrates the oil price shock 
variables, showing similar patterns of shocks during different periods of economic turmoil. 
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[Insert Figure 4 Here] 

  Finally, for shock prediction we constructed binary variables based on the identified shocks: 
Demand_Shock is set to 0 for a negative shock and 1 for a positive shock; Supply_Shock is set to 
0 for a negative supply shock and 1 for a positive supply shock; and Risk_Shock is set to 0 for a 
negative risk shock and 1 for a positive risk shock. 

3.3 Forecasting dataset 

  In addition to sentiment indicators, we also consider other related predictors of oil price shocks, 
following earlier studies (Yang et al. 2024; Kumar and Mallick, 2024; Yang et al., 2023; Al-Fayoumi 
et al., 2023; Sehgal and Pandey, 2025; Tiwari et al., 2023). The additional predictors include the 
OVX (Oil Volatility Index), which measures the market's expectations of volatility in crude oil 
prices; the USEPU (USA Economic Policy Uncertainty Index) and UKEPU (UK Economic Policy 
Uncertainty Index), which reflect the uncertainty regarding economic policies in the USA and UK, 
respectively; the RAI (Global Risk Aversion Index), which gauges global risk aversion; the GPRI 
(Geopolitical Risk Index), which assesses geopolitical risks; the BDI (Baltic Dry Index), which is an 
economic indicator issued daily by the London-based Baltic Exchange that measures the cost of 
shipping goods worldwide; and the USSSR (US Monetary Policy), which captures the stance of US 
monetary policy. Data for these variables were collected for the period from 01 August 2008 to 30 
June 2022 to align with the availability of the energy sentiment index data. Table A1 provides a 
detailed description of these additional variables, along with their respective data sources. 

  Table 1 presents the summary statistics for the variables used in this study. For instance, the 
mean of the energy sentiment index (𝐸𝑆𝑒𝑛𝑡) is 0.546, with a low variance of 0.005, suggesting 
relatively stable sentiment levels over time. Skewness values reveal the asymmetry of the 
distributions. A negative skewness for 𝐸𝑆𝑒𝑛𝑡 (-0.734) indicates that the distribution is tilted towards 
more negative sentiment, while positive skewness is observed in some of the sentiment sub-
categories, such as ESent_Neg and ESent_Pos. Kurtosis values describe the "tailedness" of the data 
distribution. High positive kurtosis values, like those observed for ESent_Neg (16.656) and 
ESent_Pos (20.541), suggest heavy tails and potential outliers in these series. The Jarque-Bera (JB) 
test statistic for normality strongly rejects the null hypothesis of normality across all variables, with 
extremely high values indicating that most variables deviate significantly from a normal distribution. 
The results from the Elliott, Rothenberg, and Stock (ERS) unit root test show that all variables 
exhibit negative test statistics (Elliott et al., 1992), suggesting the rejection of the null hypothesis 
of a unit root and indicating that the time series data are stationary. Figure 5 illustrates the 
correlation matrix. 

[Insert Table 1 & Figure 5 Here] 
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4. Methodology 
  Using a binary classification technique, our work focuses on predicting oil price shock. Thus, we 
have selected nine popular models for our research from the comprehensive literature survey. In 
particular, we have chosen eight machine learning models, and logistic regression as the conventional 
benchmark. Table 2 lists the chosen models that have been hyperparameter tuned. We use the 
Python scikit-learn library to create the benchmark and machine learning models. Description of 
each models are described as follows: 

[Insert Table 2 Here] 

4.1 Logistic Regression (LR) 

  Logistic Regression (LR) is a statistical method used for binary classification, modeling the 
relationship between a dependent binary variable (0 or 1) and one or more independent variables 
(Kleinbaum et al., 2002). It estimates the probability of a binary response based on one or more 
predictor variables.   

  The logistic regression model predicts the probability of the binary outcome 𝑝(𝑦 = 1|𝑋) using the 
following equation: 

𝑝(𝑦 = 1|𝑋) = 1
1 + 𝑒−(50+5181+5282+⋯+5;8;)                               (2) 

here, 𝑝(𝑦 = 1|𝑋) is the probability that the target variable 𝑦 is 1, given the features 𝑋. 𝛽0 is the 
intercept term. 𝛽1,… , 𝛽? are the coefficients for the predictor variables 𝑋1,… , 𝑋?. 𝑒 is the base of 
the natural logarithm. 

4.2 Random Forest (RF) 

  Random Forest (RF) is an ensemble learning method that constructs a multitude of decision trees 
during training (Breiman, 2001). The output is the majority vote of all trees (for classification) or 
average prediction (for regression). It is known for its robustness and high accuracy in many 
applications, including binary classification. The final prediction 𝑦 ̂ is made by aggregating the 
predictions from multiple decision trees 𝑇1, 𝑇2,… , 𝑇C : 

𝑦̂ = majority vote(𝑇1(𝑋), 𝑇2(𝑋),… , 𝑇C (𝑋))                               (2) 

Each decision tree 𝑇F(𝑋) produces a binary output (0 or 1) based on the features 𝑋. 

4.3 Support Vector Machine (SVM)  



 11 

  Support Vector Machine (SVM) is a supervised learning algorithm that is used for classification 
(Hearst et al., 1998). It works by finding a hyperplane that best separates data points of different 
classes in a high-dimensional space. SVM seeks the optimal hyperplane that maximizes the margin 
between the two classes. The SVM optimization problem can be formulated as: 

min 
1
2 ∥ 𝐰 ∥2                                                  (4) 

subject to: 

𝑦I(𝐰 ⋅ 𝐱I + 𝑏) ≥ 1, ∀𝑖 = 1,… , 𝑁                                    (5) 

where 𝐱I represents the feature vector for sample 𝑖. 𝑦% is the true class label (either +1 or -1) for 
sample 𝑖. 𝐰 is the weight vector. 𝑏 is the bias term. ∥ 𝐰 ∥ is the norm of the weight vector, which 
determines the margin. 

4.4 Naïve Bayes (NB) 

  Naïve Bayes is a probabilistic classifier based on Bayes’ Theorem, assuming conditional 
independence between features (Murphy, 2006). It calculates the probability of a class label given 
the features and selects the class with the highest probability. The probability of class 𝑦 given 
features 𝑋 = (𝑋1, 𝑋2,… , 𝑋?) is calculated using Bayes’ Theorem: 

𝑃 (𝑦|𝑋) = 𝑃 (𝑋|𝑦)𝑃 (𝑦)
𝑃 (𝑋)                                            (6) 

where 𝑃 (𝑦|𝑋) is the posterior probability of class 𝑦 given the features 𝑋. 𝑃 (𝑋|𝑦) is the likelihood 
of features 𝑋 given the class 𝑦. 𝑃 (𝑦) is the prior probability of class 𝑦. 𝑃 (𝑋) is the evidence, the 
total probability of 𝑋 across all classes. 

4.5 Extra Trees 

  Extra Trees (Extremely Randomized Trees) is an ensemble method similar to Random Forest, but 
with more randomness (Geurts et al., 2006). It builds a collection of decision trees, where each tree 
is trained by selecting random splits at each node, making the model less prone to overfitting. The 
final prediction is a majority vote (for classification) from all trees: 

𝑦̂ = majority vote(𝑇1(𝑋), 𝑇2(𝑋),… , 𝑇C (𝑋))                             (7) 

where each 𝑇F(𝑋) is a decision tree trained on random subsets of features and samples. 

4.6 AdaBoost 
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  AdaBoost (Adaptive Boosting) is an ensemble method that combines multiple weak learners (often 
decision trees) to form a strong classifier (Schapire, 2013). It adjusts the weight of each weak learner 
based on its performance, focusing more on samples that are incorrectly classified. The AdaBoost 
algorithm aggregates weak learners 𝑇F(𝑋) as follows: 

𝑦 ̂ = sign
⎝
⎜⎛∑ 𝛼F

C

F=1
𝑇F(𝑋)

⎠
⎟⎞                                       (8) 

where 𝛼F is the weight assigned to the weak learner 𝑇F(𝑋), based on its accuracy. sign(⋅) is the 
function that converts the output to binary values (+1 or -1). 

4.7 XGBoost (XGB) 

  XGBoost (Extreme Gradient Boosting) is an efficient and scalable implementation of gradient 
boosting (Chen and Guestrin, 2016). It uses decision trees as base learners and builds an ensemble 
by iteratively fitting trees to the residuals (errors) of previous trees. XGBoost optimizes the model 
using gradient descent. The prediction is made by summing the contributions of each tree 𝑇F(𝑋): 

𝑦 ̂ = ∑ 𝑇F

C

F=1
(𝑋)                                              (9) 

where each 𝑇F(𝑋) is a decision tree, and the model minimizes the loss function using gradient 
descent. 

4.8 K-Nearest Neighbors (KNN) 

  K-Nearest Neighbors (KNN) is a non-parametric, instance-based learning algorithm (Zhang, 2016). 
It classifies a sample based on the majority class of its 𝐾 nearest neighbors in the feature space. 
The distance metric, such as Euclidean distance, is used to determine the "closeness" between data 
points. The prediction for a new sample 𝑋Z[&?Z\ is: 

𝑦(̂𝑋Z[&?Z\) = majority vote(𝑦1, 𝑦2,… , 𝑦])                          (20) 

where 𝑦1, 𝑦2,… , 𝑦] are the class labels of the 𝐾 nearest neighbors, and the distance function (e.g., 
Euclidean) is used to identify these neighbors. 

4.9 LightGBM (LGBM) 

  LightGBM is a gradient boosting framework that uses decision trees as base learners. It is 
optimized for speed and efficiency and is particularly suited for large datasets (Ke et al., 2017). It 
uses histogram-based algorithms to speed up the training process. Like XGBoost, the prediction is 
the sum of contributions from each tree: 
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𝑦̂ = ∑ 𝑇F

C

F=1
(𝑋)                                                (31) 

where 𝑇F(𝑋) is the decision tree, and the algorithm uses gradient-based optimization to minimize 
the loss function. 

4.10 Hyperparameters 

  Table 2 presents the hyperparameters used for tuning the machine learning models in this study. 
Hyperparameter optimization is a critical step in improving model performance, as it determines 
the configuration of algorithms for better generalization and predictive accuracy. The selected 
hyperparameters for each model include parameters like learning rate, maximum depth, number of 
estimators, and regularization terms. These hyperparameters were carefully chosen and tuned using 
cross-validation to ensure optimal performance across various machine learning models. 

4.11 Shapley Adaptive Explanation 

  Shapley values are a concept from cooperative game theory used to fairly allocate the contribution 
of each feature towards the prediction (Lundberg, 2017). In the context of binary classification, 
Shapley values help explain how each feature influences the model’s output. The Shapley value for 
a feature is the average marginal contribution of that feature across all possible subsets of features. 
In the context of predicting oil price shocks, Shapley values provide an explanation of how each 
feature (such as past oil prices, geopolitical events, supply-demand factors, etc.) influences the 
model’s prediction (either 0 or 1, indicating a shock or no shock).  

  For a binary classification task, the Shapley value for feature 𝑖 can be computed as: 

𝜙I(𝑓) = ∑ |𝑆|! (|𝑁 | − |𝑆| − 1)!
|𝑁 |!`⊆b\{I}

[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]                      (42) 

where 𝜙I(𝑓) is the Shapley value of feature 𝑖 for the model 𝑓 , 𝑁  is the set of all features, 𝑆 ⊆ 𝑁\{𝑖} 
represents a subset of features that does not include feature 𝑖, 𝑓(𝑆) is the model’s prediction using 
the subset of features 𝑆, the summation is over all possible subsets 𝑆 of features excluding feature 
𝑖, |`|!(|b |−|`|−1)!

|b |!  is the weight assigned to each subset, which reflects the importance of the order in 

which features are added to the model. 

  Shapley values calculate the average contribution of each feature to the prediction by considering 
all possible ways in which the feature could be added to subsets of other features. This provides a 
fair and unbiased method to explain the importance of each feature in binary classification models 
used for predicting oil price shocks. 

4.12 Model performance evaluation 
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  For our oil price shock prediction, we have used several performance metrices to evaluate models. 
Accuracy measures the overall correctness of the model by calculating the proportion of correct 
predictions. Precision indicates the percentage of true positive predictions among all predicted 
positives, helping to assess how well the model avoids false positives. Recall (or sensitivity) focuses 
on the percentage of true positives detected by the model, indicating its ability to capture all relevant 
instances. Log-Loss evaluates the probability output of the model, penalizing false classifications 
more heavily as the confidence in those predictions increases. F1-score provides a harmonic mean of 
precision and recall, balancing the trade-off between the two. Jaccard index measures the 
intersection of predicted and actual positives relative to their union, giving an indication of overlap. 
Finally, ROC_AUC (Receiver Operating Characteristic - Area Under Curve) summarizes the 
model's ability to distinguish between positive and negative classes across all thresholds, with a 
higher score reflecting better model performance. 

 

5. Empirical Results 

5.1 Forecasting results 

  For our empirical analysis we use 70% training and 30% in testing sample split. All nine models 
are trained and tested. Figure 6 shows the confusion matrices for each model provide valuable 
insights into their classification performance in predicting oil price shocks. The confusion matrix for 
LR shows that it correctly predicted 33.05% of negative shocks and 22.48% of positive shocks. The 
model’s performance in identifying negative shocks is relatively better, but it still struggles with 
positive shocks, with 24.98% false negatives. This indicates that LR has a moderate ability to classify 
oil price shocks but could benefit from improvements in handling positive shocks. RF performed 
slightly better than LR, with 29.59% true negative and 26.61% true positive predictions. However, 
it still experienced considerable misclassification, with 20.85% of positive shocks misclassified as 
negative, and 22.96% of negative shocks misclassified as positive. These results suggest RF is more 
balanced in its predictions but still has room for improvement in reducing misclassifications. 

[Insert Figure 6 Here] 

  The SVM model produced mixed results, with 31.12% of negative shocks and 23.05% of positive 
shocks correctly classified. It had a relatively high false positive rate of 24.40% and a moderate false 
negative rate of 23.05%. While SVM is competent at distinguishing negative shocks, its performance 
is less consistent for positive shocks. Naïve Bayes showed relatively weaker performance compared 
to the other models, with 14.31% true negatives and 36.31% true positives for negative and positive 
shocks, respectively. It had high false positive and false negative rates, suggesting that Naïve Bayes 
struggles with correctly classifying both negative and positive shocks, particularly with positive 
shocks. ExtraTrees demonstrated a moderate performance, with 31.32% true negatives and 23.54% 
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true positives. However, its false positive and false negative rates were somewhat high, particularly 
with positive shocks. The results suggest that ExtraTrees can provide reasonable classifications, but 
there is significant room for improvement, especially in handling misclassifications of positive shocks. 

  AdaBoost performed similarly to ExtraTrees, with 27.67% true negatives and 26.80% true positives. 
Although its performance was fairly balanced, the model still exhibited considerable 
misclassifications, particularly false positives (20.65%). This suggests that while AdaBoost is decent, 
it could be more precise in classifying both types of shocks. XGBoost clearly outperforms all other 
models in terms of accuracy, with 30.84% true negatives and 24.88% true positives. The 
misclassification rates are relatively lower, with false positives at 22.57% and false negatives at 
22.57%, which is better than most other models. This indicates that XGBoost is not only good at 
identifying both negative and positive shocks but also more consistent in its predictions across both 
categories. KNN showed a moderate performance, with 27.09% true negatives and 24.50% true 
positives. However, its false positive and false negative rates were still significant, at 22.96% and 
22.36%, respectively. These results indicate that while KNN is a decent model, it does not perform 
as well as XGBoost in terms of precision and recall. LightGBM’s performance was relatively 
balanced, with 34.68% true negatives and 23.05% true positives. However, it had a relatively higher 
false negative rate of 24.40% compared to other models. The performance of LGBM was decent but 
not as strong as XGBoost. 

  The superior performance of XGBoost is further confirmed by the ROC AUC plot shown in Figure 
7. The ROC curve illustrates the model's ability to distinguish between positive and negative oil 
price shocks, with the AUC (Area Under the Curve) providing a measure of overall model 
performance. XGBoost exhibits the highest AUC value, indicating its strong discriminatory power 
and superior classification ability compared to the other models. 

[Insert Figure 7 Here] 

  The performance metrics of the models presented in Table 3. Accuracy is highest for XGBoost 
(60.2%), followed by RF (59.2%) and LGBM (57.8%). This indicates that XGBoost correctly 
classified the most instances of oil price shocks overall. When considering precision, XGBoost again 
leads with a score of 0.622, followed by RF (0.620) and LGBM (0.611), which means that XGBoost 
had the highest proportion of true positive predictions among all models. In terms of recall, XGBoost 
(0.556) outperforms most models, particularly with better sensitivity in detecting positive shocks 
compared to RF (0.509) and Naïve Bayes (0.733), though the latter has an unusually high recall 
but low precision. Log-Loss, a measure of model uncertainty, is lowest for XGBoost (14.334), 
signifying the model's more confident and accurate predictions. F1-score, which balances precision 
and recall, is also highest for XGBoost (0.587), indicating a well-rounded performance. The Jaccard 
index for XGBoost is 0.415, demonstrating good similarity between predicted and actual positive 
shock instances. Lastly, the ROC AUC score is highest for XGBoost (0.603), confirming its superior 



 16 

ability to distinguish between positive and negative oil price shocks. While models like RF and 
Naïve Bayes show competitive performance, XGBoost consistently outperforms across nearly all 
metrics, highlighting its robustness and reliability for forecasting oil price shocks. Earlier studies by 
Gumus and Kiran (2017), Tissaoui et al. (2023), Jabeur et al. (2023), and Simsek et al. (2024) have 
also documented the superior forecasting accuracy of the XGBoost model for oil price forecasting. 

[Insert Table 3 Here] 

5.2 Robustness test results 

  We have conducted robustness test based on different train test split, robustness test based on 
supply shock prediction, and risk shock prediction. 

  Table 4 presents the results of the robustness test based on different train-test splits (60:40 and 
80:20) to assess the stability of model performance. In the baseline analysis, we used a 70:30 train-
test split, and the robustness test explores the effects of varying the training data proportion. For 
the 60:40 split, the models' performance metrics indicate that XGBoost continues to outperform 
other models with an accuracy of 58.6%, an F1-score of 0.563, and a ROC AUC of 0.585, maintaining 
its strong performance across all metrics. Random Forest (RF) follows closely with an accuracy of 
57.9%, an F1-score of 0.556, and a ROC AUC of 0.578, while Naïve Bayes also shows competitive 
recall with an F1-score of 0.615, though its overall performance remains weaker in terms of accuracy 
and ROC AUC. The 80:20 split results show a slight drop in model performance across the board, 
likely due to the reduced training data available for the models. XGBoost still remains the top 
performer with an accuracy of 56.3%, an F1-score of 0.512, and a ROC AUC of 0.562, albeit with a 
decrease in these values when compared to the 60:40 split. Similarly, RF and Naïve Bayes exhibit a 
decline in performance, particularly in accuracy and ROC AUC, indicating that they are more 
sensitive to smaller training sets. Overall, XGBoost remains the most robust model across both split 
configurations, with relatively stable performance across all metrics, affirming its reliability in 
different scenarios. KNN consistently underperforms, with the lowest scores in both splits, further 
suggesting that its predictive power is weaker in this context. These results validate that while some 
models exhibit slight fluctuations in performance depending on the train-test split, XGBoost remains 
the most stable model for forecasting oil price shocks. The superior predicting accuracy of the 
XGBoost model for oil price forecasting has also been proven in previous studies by Gumus and 
Kiran (2017), Tissaoui et al. (2023), Jabeur et al. (2023), and Simsek et al. (2024).      

[Insert Table 4 Here] 

  Table 5 presents the results of the robustness test based on supply shock prediction, contrasting 
with the baseline analysis that used demand shock prediction as the proxy for oil price shocks. In 
this robustness test, all models were evaluated on their ability to predict supply shocks, providing 
insight into how well the models adapt to a different aspect of oil price movements. The results 
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demonstrate that XGBoost continues to outperform the other models across multiple performance 
metrics, achieving an accuracy of 62.0%, precision of 0.624, recall of 0.647, F1-score of 0.635, Jaccard 
index of 0.466, and ROC AUC of 0.619. These results suggest that XGBoost is not only the most 
accurate model but also excels in its ability to correctly identify both positive and negative supply 
shocks, as indicated by its higher recall and precision values compared to other models. Random 
Forest (RF) follows closely with an accuracy of 60.4%, precision of 0.611, and recall of 0.627, 
showcasing its strong performance in predicting supply shocks. Similarly, AdaBoost (0.595 accuracy, 
0.644 recall) and LGBM (0.609 accuracy, 0.632 recall) also deliver competitive results, particularly 
in terms of recall, suggesting they are effective in capturing a substantial proportion of true supply 
shock instances. On the other hand, models such as Naïve Bayes and KNN underperform, with KNN 
achieving the lowest performance (accuracy of 0.510, recall of 0.512), indicating its weakness in 
predicting supply shocks. The Log-Loss values across all models are relatively consistent, with 
XGBoost showing the lowest (13.711), indicating the model's more confident predictions. Overall, 
the robustness test based on supply shock prediction reaffirms that XGBoost is the most robust 
model, performing exceptionally well across various metrics, which highlights its strong predictive 
capabilities. 

[Insert Table 5 Here] 

  Table 6 presents the results of the robustness test based on risk shock prediction. In this analysis, 
the models were evaluated on their ability to predict risk shocks, a different aspect of oil price shocks 
than the demand shock used in the baseline analysis. The results highlight significant performance 
differences across models. XGBoost stands out as the top performer with an accuracy of 92.6%, 
precision of 0.925, recall of 0.897, F1-score of 0.911, Jaccard index of 0.836, and ROC AUC of 0.922, 
indicating its strong ability to correctly identify both risk shocks and non-risk shocks while 
maintaining low levels of prediction uncertainty. Similarly, Random Forest (RF) and AdaBoost 
show exceptional performance, with accuracy values of 92.3% and identical ROC AUC of 0.92, 
reflecting their excellent capacity to predict risk shocks. These models also exhibit high precision 
and recall, with RF achieving a recall of 0.9 and AdaBoost matching this with an F1-score of 0.908, 
demonstrating that they accurately capture the key risk shock instances. In contrast, SVM and 
KNN perform poorly in this context, with SVM showing the lowest performance across all metrics, 
including an accuracy of just 54.7% and recall of 0.441. Naïve Bayes also struggles, with a recall of 
only 0.388 and lower accuracy compared to the tree-based models, indicating that it is less effective 
in capturing risk shocks. ExtraTrees and LGBM also show strong performance, though slightly 
behind XGBoost, with LGBM achieving an accuracy of 92.4% and precision of 0.92. Overall, the 
robustness test based on risk shock prediction further reinforces the superior performance of 
XGBoost, with this model consistently leading in all key performance metrics. The XGBoost model's 
higher predicting accuracy for oil price forecasting has also been proven in previous studies by 
Gumus and Kiran (2017), Tissaoui et al. (2023), Jabeur et al. (2023), and Simsek et al. (2024). 
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[Insert Table 6 Here] 

5.3 Explainable AI results 

  From the results of the robustness tests and performance metrics, it is evident that XGBoost 
emerges as the best-performing model. To gain a deeper understanding of how different features 
influence the model's predictions, we further explore the results using SHAP (SHapley Additive 
exPlanations) values. SHAP values provide a transparent method to interpret the contribution of 
each feature to the model's output, highlighting the individual impact of variables on the model's 
predictions. Figure 8 presents the SHAP values for each model and each feature used in the analysis. 
For XGBoost, the SHAP values suggest that certain features have a more significant influence on 
the model’s predictions. RAI has the highest SHAP value of 21.77%, indicating its dominant role in 
shaping the model's output (Xiao et al., 2023). Other sentiment-related features, such as ESent_Neg 
and ESent_Pos, also show notable SHAP values, reflecting their impact on identifying negative or 
positive oil price shocks. Among the economic and financial predictors, OVX shows a strong 
influence with a SHAP value of 16.85%, suggesting that oil market volatility is a crucial predictor 
for oil price movements. Similarly, USSSR with a SHAP value of 9.55% further confirms the 
importance of monetary policy in forecasting oil price shocks (Castillo et al., 2020). 

[Insert Figure 8 Here] 

  Figure 9 illustrates the SHAP summary plot for the XGBoost model. From the plot and Figure 8, 
it is evident that sentiment indicators as a group contribute 29.33% to the model's predictions, 
making them a crucial factor in determining oil price shocks. This underscores the importance of 
sentiment analysis in forecasting oil price shocks, as the model relies significantly on the emotional 
tone and market mood captured by these indicators. Among the sentiment variables, ESent, 
ESent_Neg, and ESent_Pos stand out in terms of their influence, further emphasizing how shifts 
in sentiment, both negative and positive, can predict oil price shocks (Li et al., 2021; Zhu et al., 
2020; Fang et al., 2023). 

[Insert Figure 9 Here] 

  In addition to sentiment, RAI and OVX emerge as dominant factors in the model's predictions. 
RAI, with its strong link to global investor risk preferences, plays a key role in understanding how 
broader market risk impacts oil prices. Similarly, OVX, which measures oil market volatility, reflects 
the direct influence of market fluctuations on oil prices. The contribution of these variables aligns 
with the broader understanding that both economic sentiment and market volatility are critical in 
predicting oil price shocks. These results can be explained by the complex dynamics of the oil 
market, where sentiment and risk aversion often lead to significant price movements. Positive or 
negative shifts in sentiment can trigger reactions from investors, influencing oil demand expectations 
and geopolitical risks (Li et al., 2021; Zhu et al., 2020; Fang et al., 2023). Moreover, volatility 
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indicators such as OVX highlight how oil market fluctuations drive changes in oil prices, making 
these features essential. 

 

6. Conclusion and Policy Recommendations 
  This study has explored the effectiveness of various machine learning models in forecasting oil price 
shocks, with a focus on sentiment indicators and related economic variables. The results of the 
forecasting analysis demonstrate the effectiveness of various machine learning models in predicting 
oil price shocks based on sentiment indicators and other related economic factors. The models 
evaluated include Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), 
Naïve Bayes, ExtraTrees, AdaBoost, XGBoost, K-Nearest Neighbors (KNN), and LightGBM 
(LGBM). Among these, XGBoost consistently outperforms other models across multiple evaluation 
metrics such as accuracy, precision, recall, F1-score, Jaccard index, and ROC_AUC. XGBoost 
achieved an accuracy of 60.2%, an F1-score of 0.587, and a ROC_AUC of 0.603, making it the top 
performer. This model's superior performance is attributed to its ability to capture complex 
interactions and non-linear relationships within the data, leading to improved predictions. To assess 
the stability of the models, robustness tests were performed using different train-test split ratios 
(60:40 and 80:20). The results from the robustness test show that XGBoost continue to lead in 
performance, with XGBoost consistently yielding the highest accuracy, F1-score, and ROC_AUC 
across all test splits.    

  The Explainable AI results further enhance our understanding of the model's decision-making 
process, especially for the top-performing model, XGBoost. By using SHAP (Shapley Additive 
Explanations) values, we gain insights into how each feature contributes to the model's predictions. 
From the SHAP analysis, sentiment indicators emerge as the most influential features in predicting 
oil price shocks, with a combined contribution of 29.33% to the XGBoost model's predictions. This 
demonstrates the significant impact that shifts in market sentiment—captured by sentiment 
indicators such as ESent (sentiment score), ESent_Neg (negative sentiment), and ESent_Pos 
(positive sentiment)—can have on oil price fluctuations. These findings align with existing literature, 
which suggests that market sentiment often drives investor behavior and thus impacts oil price 
movements. Moreover, RAI (Risk Aversion Index) and OVX (Oil Volatility Index) are identified as 
the next most important features, with RAI reflecting global risk aversion and OVX capturing oil-
specific volatility. The contribution of these factors further supports the view that oil price shocks 
are not solely driven by supply and demand fundamentals but also by broader market dynamics 
such as investor risk perception and volatility. 

  This study provides several important policy implications for investors, regulators, and 
policymakers in the context of forecasting oil price shocks. For Investors, the results of this study 
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underscore the critical role of sentiment indicators in forecasting oil price movements. Investors can 
benefit from integrating sentiment analysis into their decision-making processes, as it significantly 
influences oil price shocks. Given that sentiment, global risk aversion (RAI), and oil-specific 
volatility (OVX) are dominant factors, investors should closely monitor these metrics alongside 
traditional supply-demand indicators. Additionally, machine learning models, particularly XGBoost, 
which consistently outperformed other models, can be leveraged to build more robust trading 
strategies. Investors may also consider hedging strategies based on sentiment shifts, as positive or 
negative changes in sentiment can predict significant market movements. For Regulators: Regulators 
can use the findings of this study to better understand the dynamics of oil price volatility and the 
potential impact of sentiment-driven market behavior. Given that sentiment and economic 
uncertainty play significant roles in price fluctuations, regulators may consider implementing policies 
that promote transparency and stability in global markets, particularly in response to shifts in 
sentiment. The results also highlight the importance of closely monitoring global risk aversion and 
economic policy uncertainty, as these factors can exacerbate oil price volatility. Regulators might 
explore mechanisms to reduce excessive speculation or manage investor panic during periods of high 
volatility, thereby contributing to more stable oil markets. 

  Policymakers can use the insights from this study to design better frameworks for managing oil 
price fluctuations and their effects on the economy. As sentiment indicators and economic 
uncertainty (e.g., USEPU, UKEPU) strongly correlate with oil price shocks, policymakers should 
take these factors into account when crafting policies related to energy security and pricing. For 
instance, during periods of heightened economic policy uncertainty or risk aversion, governments 
could consider implementing counter-cyclical policies, such as strategic oil reserves or targeted 
subsidies, to buffer the impact of oil price volatility on consumers and industries. Additionally, the 
use of sentiment analysis tools can be integrated into decision-making processes to anticipate and 
respond proactively to shifts in global oil markets. As oil price shocks often have ripple effects on 
inflation, trade balances, and economic growth, monitoring these key sentiment and risk metrics 
could support more effective and timely interventions. Future studies may extend our findings by 
incorporating high-frequency data to capture more granular market dynamics and improve the 
accuracy of predictions. Additionally, exploring the application of sentiment indicators to predict 
broader energy prices, beyond oil, could offer valuable insights into other segments of the energy 
market. 
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Figures 
 

Figure 1: Word cloud of cleaned dataset 
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Figure 2: Sentiment distribution 

 

     

 

Figure 3: Sentiment indicators 
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Figure 4: Oil price shock variables 
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Figure 5: Correlation matrix 
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Figure 6: Confusion matrix 
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Figure 7: Receiver Operating Characteristic Curve 
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Figure 8: Variable importance 
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Figure 9: SHAP values of XGBOOST model 
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Tables 
 

Table 1: Descriptive statistics 
 

Mean Variance Skewness Ex.Kurtosis JB ERS 
ESent 0.546 0.005 -0.734*** 2.893*** 1521.101*** -10.388*** 
ESent_Neg 0.072 0.197 2.721*** 16.656*** 44377.475*** -19.060*** 
ESent_Pos 0.050 0.129 2.836*** 20.541*** 65636.536*** -28.853*** 
Polarity 0.061 0.001 -0.297*** 20.224*** 59172.855*** -21.435*** 
Subjectivity 0.326 0.002 0.948*** 6.824*** 7249.742*** -13.349*** 
Compound 0.041 0.005 -0.839*** 4.558*** 3409.207*** -10.814*** 
OVX 0.000 0.004 1.702*** 27.304*** 109432.603*** -26.298*** 
USEPU 0.000 0.228 0.118*** 1.989*** 580.143*** -29.572*** 
UKEPU 0.000 0.216 -0.007 2.788*** 1123.205*** -3.863*** 
RAI 0.000 0.007 0.352*** 80.975*** 947812.757*** -11.183*** 
GPRI 0.000 0.179 0.006 1.480*** 316.460*** -18.656*** 
BDI 0.000 0.001 0.319*** 4.363*** 2810.264*** -15.607*** 
USSSR 0.000 0.001 0.161*** 5.694*** 4701.887*** -15.584*** 
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Table 2: Hyperparameters 

Model Parameter Name & Description Final Parameter 
LR Penalty: Regularization type; Solver: Algorithm to 

use for optimization 
'liblinear' 

RF Bootstrap: Whether bootstrap samples are used 
when building trees; Max Depth: Maximum depth 
of the tree; Max Features: Number of features to 
consider; Min Samples Leaf: Minimum number of 
samples required to be at a leaf node; Min Samples 
Split: Minimum number of samples required to split 
an internal node; N Estimators: Number of trees in 
the forest 

{'bootstrap': True, 'max_depth': 
90, 'max_features': 3, 
'min_samples_leaf': 4, 
'min_samples_split': 10, 
'n_estimators': 300} 

SVM C: Regularization parameter; Gamma: Kernel 
coefficient; Kernel: Specifies the kernel type to be 
used 

{'C': 100, 'gamma': 0.1, 'kernel': 
'rbf'} 

Naïve Var Smoothing: A regularization parameter to avoid 
division by zero 

{'var_smoothing': 
3.5111917342151275e-06} 

ExtraTrees Bootstrap: Whether bootstrap samples are used 
when building trees; Max Depth: Maximum depth 
of the tree; Max Features: Number of features to 
consider; Min Samples Leaf: Minimum number of 
samples required to be at a leaf node; Min Samples 
Split: Minimum number of samples required to split 
an internal node; N Estimators: Number of trees in 
the forest 

{'bootstrap': True, 'max_depth': 
90, 'max_features': 3, 
'min_samples_leaf': 3, 
'min_samples_split': 10, 
'n_estimators': 300} 

AdaBoost N Estimators: The maximum number of estimators 
to use; Learning Rate: Weight applied to the weak 
learners; Algorithm: Specifies the boosting 
algorithm 

{'algorithm': 'SAMME', 
'learning_rate': 1.02, 
'n_estimators': 20} 

XGBoost Max Depth: Maximum depth of the tree; Learning 
Rate: Step size used in gradient descent; Subsample: 
Proportion of the dataset used for fitting the model 

{'learning_rate': 0.01, 'max_depth': 
7, 'subsample': 0.5} 

KNN N Neighbors: Number of neighbors to use for 
classification; Weights: Weight function used in 
prediction; Metric: Distance metric used for the 
data 

{'metric': 'manhattan', 
'n_neighbors': 9, 'weights': 
'distance'} 

LGBM Num Leaves: Maximum number of leaves in one 
tree; Min Child Samples: Minimum number of 
samples in a leaf node; Min Child Weight: 
Minimum sum of instance weight in a leaf node; 
Subsample: Fraction of data used for training; 
Colsample Bytree: Fraction of features used for each 
tree; Reg Alpha: L1 regularization term; Reg 
Lambda: L2 regularization term 

{'colsample_bytree': 
0.952164731370897, 
'min_child_samples': 111, 
'min_child_weight': 0.01, 
'num_leaves': 38, 'reg_alpha': 0, 
'reg_lambda': 0.1, 'subsample': 
0.3029313662262354} 
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Table 3: Forecasting results 

Models Accuracy Precision Recall Log-Loss F1-score Jaccard ROC_AUC 
LR 0.542 0.588 0.327 16.516 0.420 0.266 0.545 
RF 0.592 0.62 0.509 14.715 0.559 0.388 0.593 
SVM 0.500 0.509 0.437 18.039 0.470 0.307 0.501 
Naïve 0.510 0.513 0.733 17.658 0.603 0.432 0.506 
ExtraTrees 0.547 0.601 0.321 16.343 0.419 0.265 0.550 
AdaBoost 0.544 0.582 0.363 16.446 0.447 0.288 0.547 
XGBoost 0.602 0.622 0.556 14.334 0.587 0.415 0.603 
KNN 0.499 0.507 0.467 18.074 0.486 0.321 0.499 
LGBM 0.578 0.611 0.469 15.200 0.530 0.361 0.580 

 

Table 4: Robustness test based on train test split 
 

60:40 
  

80:20 
  

 
Accuracy F1-score ROC_AUC Accuracy F1-score ROC_AUC 

LR 0.545 0.502 0.542 0.545 0.492 0.543 
RF 0.579 0.556 0.578 0.537 0.498 0.536 
SVM 0.521 0.493 0.519 0.524 0.494 0.523 
Naïve 0.514 0.615 0.528 0.519 0.596 0.523 
ExtraTrees 0.546 0.509 0.544 0.536 0.472 0.534 
AdaBoost 0.556 0.537 0.555 0.556 0.533 0.555 
XGBoost 0.586 0.563 0.585 0.563 0.512 0.562 
KNN 0.468 0.465 0.469 0.481 0.448 0.480 
LGBM 0.555 0.524 0.554 0.552 0.512 0.550 

 

 

Table 5: Robustness test based on supply shock prediction 
 

Accuracy Precision Recall Log-Loss F1-score Jaccard ROC_AUC 
LR 0.594 0.605 0.597 14.646 0.601 0.429 0.594 
RF 0.604 0.611 0.627 14.265 0.619 0.448 0.604 
SVM 0.543 0.555 0.542 16.481 0.548 0.378 0.543 
Naïve 0.573 0.572 0.664 15.373 0.615 0.444 0.571 
ExtraTrees 0.591 0.595 0.629 14.75 0.611 0.44 0.59 
AdaBoost 0.595 0.597 0.644 14.611 0.619 0.448 0.593 
XGBoost 0.620 0.624 0.647 13.711 0.635 0.466 0.619 
KNN 0.510 0.522 0.512 17.658 0.517 0.349 0.510 
LGBM 0.609 0.615 0.632 14.092 0.623 0.453 0.608 



 37 

Table 6: Robustness test based on risk shock prediction 
 

Accuracy Precision Recall Log-Loss F1-score Jaccard ROC_AUC 
LR 0.795 0.889 0.587 7.375 0.707 0.547 0.767 
RF 0.923 0.916 0.9 2.77 0.908 0.831 0.92 
SVM 0.547 0.46 0.441 16.343 0.45 0.29 0.532 
Naïve 0.682 0.73 0.388 11.461 0.507 0.339 0.642 
ExtraTrees 0.794 0.924 0.557 7.41 0.695 0.533 0.762 
AdaBoost 0.923 0.918 0.897 2.77 0.908 0.831 0.92 
XGBoost 0.926 0.925 0.897 2.666 0.911 0.836 0.922 
KNN 0.534 0.436 0.368 16.793 0.399 0.249 0.511 
LGBM 0.924 0.92 0.897 2.735 0.909 0.833 0.92 
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Appendix A 
Table A1: Variable specification 

Variable Description Data Source 
Demand_Shock Measures the influence of changes in global economic 

activity on oil prices. Binary variable created based on 
the positive and negative values of Demand_Shock, 
where the value is 0 for a negative shock and 1 
otherwise. 

Authors calculation 
form Datastream 

Supply_Shock Captures production-related disturbances affecting the 
oil market. Binary variable created based on the positive 
and negative values of Supply_Shock, where the value 
is 0 for a negative shock and 1 otherwise. 

Authors calculation 
form Datastream 

Risk_Shock Reflects the impact of stock market volatility and 
market expectations on oil prices. Binary variable 
created based on the positive and negative values of 
Risk_Shock, where the value is 0 for a negative shock 
and 1 otherwise. 

Authors calculation 
form Datastream 

ESent Overall energy sentiment index constructed using 
Twitter data 

Authors calculation 
form Twitter data 

ESent_Neg Changes in number of negative tweets Authors calculation 
form Twitter data 

ESent_Pos Changes in number of positive tweets Authors calculation 
form Twitter data 

L1_ESent Lagged energy sentiment index by one period. Authors calculation 
form Twitter data 

L2_ESent Lagged energy sentiment index by two periods. Authors calculation 
form Twitter data 

L5_ESent Lagged energy sentiment index by five periods. Authors calculation 
form Twitter data 

Polarity Measures the positivity or negativity of sentiment in 

energy-related tweets. 

Authors calculation 
form Twitter data 

Subjectivity Assesses the degree of personal opinion or factual 
information in energy-related tweets. 

Authors calculation 
form Twitter data 

Compound Aggregated sentiment score combining polarity and 

subjectivity. 

Authors calculation 
form Twitter data 

OVX Oil Volatility Index indicating the market's expectation 
of future oil price volatility. 

Datastream 

USEPU U.S. Economic Policy Uncertainty Index  Baker et al. (2016) 
UKEPU U.K. Economic Policy Uncertainty Index Baker et al. (2016) 
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RAI Global Risk Aversion Index Bekaert et al. (2022) 
GPRI Geopolitical Risk Index Caldara and Iacoviello 

(2022) 
BDI Baltic Dry Index measuring global shipping rates for dry 

bulk commodities. 
Datastream 

USSSR U.S. shadow sort Rates indicating U.S. monetary policy 
stance 

Krippner, L. (2013) 

L1_Demand_Shock Lagged Demand_Shock by one period. Authors calculation 
form Datastream 

L1_Supply_Shock Lagged Supply_Shock by one period. Authors calculation 
form Datastream 

L1_Risk_Shock Lagged Risk_Shock by one period. Authors calculation 
form Datastream 

L2_Demand_Shock Lagged Demand_Shock by two periods. Authors calculation 
form Datastream 

L2_Supply_Shock Lagged Supply_Shock by two periods. Authors calculation 
form Datastream 

L2_Risk_Shock Lagged Risk_Shock by two periods. Authors calculation 
form Datastream 

L5_Demand_Shock Lagged Demand_Shock by five periods. Authors calculation 
form Datastream 

L5_Supply_Shock Lagged Supply_Shock by five periods. Authors calculation 
form Datastream 

L5_Risk_Shock Lagged Risk_Shock by five periods. Authors calculation 
form Datastream 

 


